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Abstract. An essential step of any DNA computation is encoding the in-
put data on single or double DNA strands. Due to the biochemical proper-
ties of DNA, complementary single strands can bind to one another form-
ing double-stranded DNA. Consequently, data-encoding DNA strands can
sometimes interact in undesirable ways when used in computations. It is
crucial thus to analyze properties that guard against such phenomena and
study sets of sequences that ensure that no unwanted bindings occur dur-
ing any computation. This paper formalizes and investigates properties of
DNA languages that guarantee their robusteness during computations. Af-
ter defining and investigating several types of DNA languages possessing
good encoding properties, such as sticky-free and overhang-free languages,
we give algorithms for deciding whether regular DNA languages are in-
variant under bio-operations. We also give a method for constructing DNA
languages that, in addition to being invariant and sticky-free, possess error-
detecting properties. Finally, we present the results of running tests that
check whether several known gene languages (the set of genes of a given
organism) as well as the input DNA languages used in Adleman’s DNA
computing experiment, have the defined properties.

Key words: Theoretical DNA computing, DNA encodings, codes, formal
languages.
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1 Introduction

Deoxyribonucleic acid (DNA, Fig.1) is the molecule found in all cellular
organisms that holds their genetic information. It is composed primarily of
nucleotides (Figure 1 (b)) with a sugar-phosphate backbone (Figure 1 (a)).
The nucleotides attach to the backbone to form a structure that resembles a
clothesline if one were to use the backbone as the line and the nucleotides as
the clothes. This is known as single-stranded DNA. A single strand of DNA
has an orientation and its two ends are physically different. By convention,
one end of the backbone is called the 5′ end and the other one is called the
3′ end.

Single-stranded DNA molecules can bind to each other to form double-
stranded DNA molecules. This happens due to the fact that the nucleotides
are pairwise Watson-Crick complementary: A is complementary to T and
C to G. When two complementary single DNA strands with opposite orien-
tation meet under favourable conditions, they bind to each other to form a
double-stranded DNA molecule in a process called base-pairing, hybridiza-
tion or annealing. The reverse process, of a double-stranded DNA molecule
breaking apart into its single-stranded components is called melting or de-
naturation.
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Fig. 1. A representation of a segment of a double-stranded DNA molecule. It is composed
of a sugar-phosphate backbone (a) with a 5′ → 3′ orientation, designated by the arrows,
and a collection of nucleotides (b). The nucleotides form bindings (c) based on the Watson-
Crick complementarity, such as those in (d). The two single-strands of DNA bind in an
anti-parallel fashion, that is, when lined up, one strand is oriented 5′ → 3′ and the other is
oriented 3′ → 5′. Non-overlapping sequences of three nucleotides (e) define codons, which
eventually define the amino acid sequences of proteins

DNA computing is based on the fact that information (numbers, let-
ters, special characters) can be encoded over the four-letter alphabet ∆ =
{A,C,G, T} and therefore represented physically by DNA strands. More-
over, molecular biology techniques can be used to manipulate those strands
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and thus perform arithmetic and logic operations.The techniques that have so
far been used for computations, called in the sequel bio-operations [17], in-
clude synthesis of desired strands, hybridization, denaturation, separation of
strands by length, extraction from a heterogeneous solution of those strands
that contain a given pattern as a subsequence, cut and paste DNA strands
at desired locations, insert and delete DNA strands into other strands, make
copies of DNA strands, detect and read out the sequence of letters composing
a DNA strand, etc.

After the initial human intervention, consisting for example of mixing
the appropriate components of a solution, most bio-operations consist ei-
ther of DNA strands self-assembling, or of active molecules (like enzymes)
acting upon DNA strands. A fundamental difference between an electronic
computer and a DNA based-computer is that in the former data interaction
is fully controlled by the programmer: one bit from a memory location will
not affect another bit at another location, unless explicitely instructed to do
so. In contrast, in a test-tube DNA-computer, data-encoding DNA strands
can affect each other in undesired ways. Take for example the bio-operation
hybridization based on Watson-Crick complementarity. Adleman’s DNA
algorithm, [1], for finding a Directed Hamiltonian Path in a given graph
consisted of encoding the nodes and edges on single DNA strands in such
a way that legal paths through the graph were formed by self-assembly:
5′ → 3′ nodes were brought together by 3′ → 5′ edges encoded especially
to bind both the incoming and outgoing nodes. As seen in Adleman’s ex-
periment, hybridization is fundamental to DNA computing. However, if the
input data is not carefully encoded, some data-encoding DNA single strands
can bind to others rendering them useless for subsequent computation. This
points out to yet another difference between DNA computing and electronic
computing. In electronic computing an operand is not “consumed” by an
operation, i.e. performing the addition 1 + 2 = 3 will not decrease the num-
ber of “1”s available for other additions. However, in DNA computing, a
bio-operation usually consumes both operands. This means that if one of
the operands is involved in an illegal binding, it may be unavailable for the
desired computation and thus affect the correctness of the result.

In most proposed DNA-based algorithms, the initial DNA solution en-
coding the input to the problem will contain some DNA strands which rep-
resent single codewords, and some which represent strings of catenated
codewords. Several attempts have been made to address the issue of “good
encodings” by trying to find sets of codewords which are unlikely to form
undesired bonds with each other by hybridization [5], [9], [10]. For example
genetic and evolutionary algorithms have been developed which select for
sets of DNA sequences that are less likely to form undesirable bonds [4],
[6]. [7] has developed a program to create DNA sequences to meet logical
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and physical parameters such as uniqueness, melting temperatures and G/C
ratio as required by the user. [8] has addressed the issue of finding an optimal
word design for DNA computing on surfaces. [12] has designed a software
for constraint-based nucleotide selection. [11] has investigated encodings
for DNA computing in virtual test tubes. [22] used combinatorial methods
to calculate bounds on the size of a set of uniform code words (as a function
of codeword length) which are less likely to mis-hybridize.

This paper continues the approach in [18], [14] by formalizing and in-
vestigating properties of languages that guarantee that no unwanted partial
bindings will occur between the words of the language. The paper is orga-
nized as follows. Section 2 contains basic definitions, notation and examples
of the notions used or defined in this paper, such as sticky-free DNA lan-
guages or overhang-free DNA languages. Section 3 investigates properties
of such languages, for example, what are necessary and sufficient conditions
for the catenation of two languages to have one of the desired properties.
Section 4 gives algorithms for deciding whether a given regular language
is invariant under bio-operations. By applying these results to the compu-
tation language of a DNA-based system (the set of all possible words that
can be obtained during any bio-computation) we can decide whether “good”
encoding properties of the initial input language are preserved during a bio-
computation. Section 5 gives a method for constructing languages that, in
addition to being invariant, nonoverlapping and sticky-free, possess error-
detecting capabilities. Finally, Section 6 presents the results of running tests
checking whether several known gene languages (the set of genes of a given
organism), as well as the input DNA language used in Adleman’s first DNA
computing experiment, have the properties we have defined.

2 Definitions and Examples

For a finite set S, we denote by |S| the cardinality of S, that is, the number
of elements in S. The set of non-negative integers is denoted by N. Let
X∗ be the free monoid generated by the finite alphabet X under the cate-
nation operation, where 1 denotes the empty word. X+ equals X∗ \ {1}.
A word w over X is a string w = a1a2 . . . an where ai ∈ X . The length
of the word w is denoted by |w| and is the number of its letters, including
repetitions, |w| = n. The length of the empty word is zero. A language L
is a subset of X∗. The catenation of two languages L1, L2 ⊆ X∗ is de-
fined as L1L2 = {uv| u ∈ L1, v ∈ L2}. A mapping α : X∗ → X∗
is called a morphism (anti-morphism) of X∗ if α(uv) = α(u)α(v) (re-
spectively α(uv) = α(v)α(u)) for all u, v ∈ X∗. A bijective morphism
(anti-morphism) is called an isomorphism (anti-isomorphism) of X∗. Note
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that both a morphism and an anti-morphism of X∗ are completely defined
if we define their values on the letters of X .

An involution θ : S → S of S is a mapping such that θ2 is equal to
the identity mapping, i.e., θ(θ(x)) = x for all x ∈ S. It follows then that
an involution θ is bijective and θ = θ−1. The identity mapping is a trivial
example of an involution. In general, if f : X → X is an involution, then
X can be partitioned into X = A∪A′ ∪B where |A| = |A′| and, for every
a ∈ A we have f(a) = a′, f(a′) = a, a′ ∈ A′, while f(b) = b for all
b ∈ B. If A = A′ = ∅ then f is the identity on X , while if B = ∅ f is a
sort of complement function on X which maps every element of A into an
element of A′ and vice versa.

An involution of X can be extended to either a morphism or an anti-
morphism ofX∗. For example, if the identity ofX is extended to a morphism
of X∗, we obtain the identity involution of X∗. However, if we extend the
identity ofX to an anti-morphism ofX∗ we obtain instead the mirror-image
involution of X∗ that maps each word u into v where

u = a1a2 . . . ak, v = ak . . . a2a1, ai ∈ X, 1 ≤ i ≤ k.

If ∆∗ is the free monoid generated by the DNA-alphabet ∆ then the
mapping τ : ∆ → ∆ defined by τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) =
C can be extended in the usual way to an anti-morphism of ∆∗ that is
also an involution of ∆∗. This involution formalizes the notion of Watson-
Crick complement of a DNA sequence and will therefore be called the DNA
involution, [18]. By convention, a word w = a1a2 . . . an in ∆∗ will signify
the DNA single strand 5′ − a1a2 . . . an − 3′.

We conclude the list of definitions needed with some coding theory no-
tions. A code K is a subset of X+ satisfying the property that, for every
word w in K+, there is a unique sequence (v1, v2, . . . , vn) of words in K
such that w = v1v2 · · · vn. An infix code, K, has the property that no word
of K is properly contained in another word of K, that is, K ∩ (X+KX∗ ∪
X∗KX+) = ∅. A comma-free code K is a language with the property
K2 ∩X+KX+ = ∅. Every comma-free code is an infix code.

Let us return now to the DNA computation set-up. In a DNA algorithm
the input data consists of a set of “codewords” represented by DNA strands.
In our terminology, this is a language over∆+. We are interested in defining
languages in such a way that no two codewords can bind to each other. [18],
[14] have defined and analyzed several types of unwanted hybridizations.
For example, a language L ⊆ ∆+ where no codeword is the exact Watson-
Crick complement of another codeword is called τ -nonoverlapping. A lan-
guage where a codeword has the property that its Watson-Crick complement
never is a subword of (and thus never binds to a segment of) another one is
called DNA compliant. A language where the Watson-Crick complement of
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a codeword never is a subword of the catenation of two other codewords is
called τ -free. In [18], [14] properties of languages with “good” coding fea-
tures such as τ -nonoverlapping, DNA compliant and τ -free, were defined
and investigated.

Note that until now we eliminated the cases where one word was com-
pletely complementary to a segment of another, or to a segment of the cate-
nation of two others. However, the biological reality points to other possible
undesired hybridizations: two strands can stick to each other even when both
of them have only segments of themselves that are fully complementary. For
example if two codewords have enough of an overlap, they will bind pro-
ducing a strand that is partially double-stranded and with single-stranded
overhangs (“sticky ends”) on the 5′ end or the 3′ end (see Fig.2, third row,
1st, 3rd and 4th box). This paper continues the study in [18], [14] by ad-
dressing types of unwanted hybridizations that involve such partial bindings
of codewords.

A summary of all the desirable properties of languages is given below,
where θ is an arbitrary morphic or anti-morphic involution of X∗ and L ⊆
X+. In the particular case where θ is the DNA involution and X = ∆,
they depict the good encoding properties that languages consisting of DNA
strands should have if they are to be used for computations. Definitions
(A)-(E) of θ-nonoverlapping and θ-compliant languages were given in [18];
definition (F) of a θ-free language was given in [14]. Definitions (G)-(J)
of θ-sticky-free and θ-overhang-free languages are new notions introduced
here.

(A) θ-nonoverlapping: L ∩ θ(L) = ∅.
(B) θ-compliant: ∀w ∈ L, x, y ∈ X∗, w, xθ(w)y ∈ L ⇒ xy = 1.
(C) θ-p-compliant: ∀w ∈ L, y ∈ X∗, w, θ(w)y ∈ L ⇒ y = 1.
(D) θ-s-compliant: ∀w ∈ L, y ∈ X∗, w, yθ(w) ∈ L ⇒ y = 1.
(E) strictly θ-compliant: ∀w ∈ L, x, y ∈ X∗, w, xθ(w)y ∈ L ⇒ xy = 1

and w �= θ(w).
(F) θ-free: L2 ∩ X+θ(L)X+ = ∅.
(G) θ-sticky-free: ∀w ∈ X+, x, y ∈ X∗, wx, yθ(w) ∈ L ⇒ xy = 1.
(H) θ-3′-overhang-free: ∀w ∈ X+, x, y ∈ X∗, wx, θ(w)y ∈ L ⇒ xy =

1.
(I) θ-5′-overhang-free: ∀w ∈ X+, x, y ∈ X∗, xw, yθ(w) ∈ L ⇒ xy =

1.
(J) θ-overhang-free: both θ-3′-overhang-free and θ-5′-overhang-free.

For convenience, we agree to say that a languageL containing the empty
word has one of the above properties if L \ {1} has that property.

Some of the situations these definitions are meant to depict are graphi-
cally presented in Figure 2: Each box in the figure represents the situation
forbidden in a class of languages having a certain property. The arrows
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signify proper inclusion. For example, if a DNA language is θ-3′-overhang-
free then it is also θ-p-compliant. The names of the corresponding language
properties are given in brackets. For example, a θ-p-compliant language is
a language where no two words can bind to form a structure like that in
the bottom left box of Figure 2. θ-compliance, θ-p-compliance and θ-s-
compliance (p stands for prefix and s stands for suffix) have been defined
and studied in [18], [14], while θ-sticky-freeness and θ-overhang-freeness,
θ-3′-overhang-freeness, θ-5′-overhang-freeness are investigated in this pa-
per. The properties depicted by the top three boxes are the topic of future
study.

θ(      - compliant) θ(      - sticky-free)

θ(      - p - compliant) (      - s - compliant)θ

(      - 3’ - overhang-free)θ θ(      - 5’ - overhang-free)

Fig. 2. Language hierarchy

To further clarify the notions, we give in the following examples of
languages that have or do not have the defined properties.

Example 1. If we consider X = {a, b} and f an anti-morphic involution of
X∗ defined by f(a) = b, f(b) = a, then the language L = {anbn| n ≥ 1}
is not f -compliant. Indeed, for any k ≥ 1 f(akbk) = f(bk)f(ak) = akbk

which is a subword of infinitely many words in L. The language L is not f -
nonoverlapping as L ∩ f(L) = L �= ∅.

However,L is f -p-compliant as v, f(v)x ∈ L imply v = aibi, aibix ∈ L
which implies x = 1. A similar argument shows that L is f -s-compliant.

If instead of the involution f we consider the function g(a) = b, g(b) = a
extended to a morphic involution, then L is g-compliant. Indeed, any word
w = anbn ∈ L cannot have as a subword a word of the type g(u) = bkak,
where u = akbk ∈ L. L is also g-nonoverlapping as L ∩ g(L) = ∅.
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Observe that, for an involution θ, if a language is θ-compliant then it
is both θ-p-compliant and θ-s-compliant but the reverse does not hold as
shown by the previous example.

Note that the notions of θ-compliant, θ-p-compliant and θ-s-compliant
language become, in the particular case of θ being the identity function on
X , extended to a morphic involution, the well-known notions of infix code,
prefix code and respectively suffix code.

Example 2. IfX = {a, b} and g is the morphic involution g(a) = b, g(b) =
a, the language L = {anbn| n ≥ 1} is not g-free. Indeed, we can find
u = aibi, v = ajbj and w = akbk with k < min{i, j} such that

uv = aibiajbj = aibi−kbkakaj−kbj = xg(w)y,

where x = aibi−k, y = aj−kbj and therefore xy �= 1.
On the other hand, for Y = {a, b, c} and h extended to a morphic

involution from h(a) = c, h(c) = a, h(b) = b, we have that the language
L′ = {anbncn| n ≥ 1} is h-free. Indeed, words uv ∈ L′2 are of the
form uv = aibiciajbjcj , i, j > 0, while, for any w = akbkck ∈ L′,
h(w) = ckbkak and therefore h(w) cannot be a subword of any uv ∈ L′2.

Note that in the particular case when θ is the identity on an alphabet X
extended to a morphic involution of X∗, the notion of a θ-free language
becomes the well-known notion of a comma-free code.

Example 3. If X = {a, b} and the function e(a) = a, e(b) = b is extended
to an anti-morphic involution then the language L = {anbn| n > 0} is
e-sticky-free. This follows as any word wx ∈ L is of the form anbn, n > 0
and therefore w = aibj , i > 0, j ≥ 0. However then we have e(w) = bjai

which cannot be a suffix of any word in L.
On the other hand, if Y, L′ and h are like in Example 2, then L′ is not

h-sticky-free. We can have, for example, u = v = aibici, i > 0 in L′ and
therefore u = wx, v = yh(w) for x = bici, y = aibi, w = ai.

Example 4. If Y = {a, b, c}, L′ = {anbncn| n > 0}, and t is defined
as t(a) = a, t(b) = c, t(c) = b and is extended to a morphic involution,
then L′ is not t-3’-overhang-free. Indeed, we can find wx = aibici, i > 0,
w = aj , x = ai−jbici such that t(w)y = ajbjcj ∈ L′. The language
L′ is t-5’-overhang-free as xw ∈ L′ means xw = aibici and therefore
t(w) = ubk, k > 0. However, no word in L′ ends in b and therefore t(w)
cannot be the suffix of any word in L′. As it is t-5’-overhang-free but not
t-3′-overhang-free, it follows that L′ is not t-overhang-free.

An example of a language which is not g-5’-overhang-free where g is
defined as in Example 2 is L′′ = {w ∈ {a, b}∗| |w|a = |w|b}. We can find
indeed words x = y = b3a3, w = ba such that both xw and yg(w) are in
L′′.
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3 Sticky-free and overhang-free languages

We have defined several properties that are desirable for DNA languages to
have. The practical implication is that one can write algorithms (see Section
6) that can check whether or not a given DNA language has these properties.
Ideally a minimal number of such checks would be optimal, therefore we are
interested in finding interconnections between these properties which would
reduce the number of checks needed. For example, the result that a language
which is 3′-overhang-free is p-compliant has the practical implication that
we only need to check the property of 3′-overhang-freeness. The first part
of this section investigates such relations between some of the properties,
complementing thus the results obtained in [14]. The second part of the
section addresses the problem of catenation of DNA languages. This is a
practical problem that might arise when combining two computations, which
means taking the union of, but also possibly catenating, their input DNA
languages. The question we address is under which conditions the catenation
of two sticky-free or overhang-free languages has the same property.

The following proposition makes a connection between the notions of
θ-sticky-free and θ-compliant languages. (If L ⊆ X+ is a language then Lp
denotes the set of all its proper and nonempty prefixes and Ls the set of all
its proper and nonempty suffixes.)

Proposition 1. For every language L ⊆ X+ and for every given morphic
or anti-morphic involution θ : X+ → X+, the following are equivalent:

(1) L is θ-sticky-free;
(2) θ(L) is θ-sticky-free;
(3) Lp ∩ θ(Ls) = ∅ and L is both θ-p-compliant and θ-s-compliant.

Proof. (1)⇒(2)
Suppose θ(L) is not θ-sticky-free, i.e., there exist x, y ∈ X∗, w ∈ X+

such that wx ∈ θ(L) , yθ(w) ∈ θ(L) and xy �= 1. If θ is morphic,
then θ(w)θ(x) ∈ L and θ(y)w ∈ L. Since L is sticky-free, we have
1 = θ(x)θ(y) = θ(xy) and therefore xy = 1 – a contradiction. If θ is
anti-morphic, then θ(x)θ(w) ∈ L and wθ(y) ∈ L. Again, since L is sticky-
free, 1 = θ(x)θ(y) = θ(yx) and therefore yx = 1 – a contradiction. Hence
θ(L) must be θ-sticky-free.

(2)⇒(3)
Suppose that Lp ∩ θ(Ls) �= ∅. Let u be an element of Lp ∩ θ(Ls).

u ∈ Lp implies that ux ∈ L for some x ∈ X+. The fact that u ∈ θ(Ls)
implies that θ(u) ∈ Ls which, in turn, implies that yθ(u) ∈ L for some
y ∈ X+. If θ is morphic, then θ(u)θ(x) ∈ θ(L) and θ(y)u ∈ θ(L). Since
θ(L) is θ-sticky-free we have 1 = θ(x)θ(y) = θ(xy) and so xy = 1 –
a contradiction. If θ is anti-morphic, we have θ(x)θ(u) ∈ θ(L) and also
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uθ(y) ∈ θ(L). Hence 1 = θ(y)θ(x) = θ(xy) and xy = 1 – a contradiction.
Hence Lp ∩ θ(Ls) = ∅. To show that L is θ-p-compliant, suppose that
ux ∈ L and θ(u) ∈ Lwith u ∈ X+. Then if θ is morphic, θ(u)θ(x) ∈ θ(L)
and u ∈ θ(L). Because θ(L) is sticky-free, θ(x) = 1, and hence x = 1. If
θ is anti-morphic, then θ(x)θ(u) ∈ θ(L) and u ∈ θ(L) imply x = 1 again.
Hence L is θ-p-compliant and θ-s-compliance can be similarly shown.

(3)⇒(1) Suppose that L is not θ-sticky-free. Then there exist wx ∈
L,w ∈ X+, yθ(w) ∈ L, x, y ∈ X∗ with xy �= 1. If x �= 1, y �= 1, then
w ∈ Lp, θ(w) ∈ Ls which impliesw ∈ θ(Ls), and thereforew ∈ Lp∩θ(Ls)
– a contradiction. If x �= 1 and y = 1, then L is not θ-s-compliant – a
contradiction. Conversely, x = 1, y �= 1 imply L is not θ-p-compliant – a
contradiction. ��

The following proposition shows a connection between the θ-sticky-free,
θ-compliant, θ-overhang-free and θ-free languages.

Proposition 2. LetX be an alphabet, θ an involution, andL, ∅ �= L ⊆ X+

be a language. In case θ is morphic, then if L is θ-compliant and θ-sticky-
free then L is θ-free. In case θ is anti-morphic, then if L is θ-compliant and
either θ-3′-overhang-free or θ-5’-overhang-free then L is θ-free.

Proof. SupposeL is not θ-free, i.e.,L2 ∩X+θ(L)X+ �= ∅. Then there exist
u, v, w ∈ L and x, y ∈ X+ such that uv = xθ(w)y.

Consider the case when θ(w) is a subword of u. Let u = u1u2u3 ∈ L
such that θ(w) = u2. Observe that u1u3 �= 1 since x ∈ X+. Moreover,
since L is θ-compliant, θ(L) is also θ-compliant, [18].

If θ is morphic, then θ(u) = θ(u1)θ(u2)θ(u3) ∈ θ(L) and u2 ∈ θ(L)
imply θ(u1)θ(u3) = 1 by the θ-compliance of θ(L). Hence θ(u1u3) = 1
and so u1u3 = 1 – a contradiction.

If θ is anti-morphic, then θ(u) = θ(u3)θ(u2)θ(u1) ∈ θ(L), u2 ∈ θ(L)
imply θ(u3)θ(u1) = 1, by the θ-compliance of θ(L). Hence θ(u1u3) = 1
and so u1u3 = 1 – a contradiction.

If θ(w) is a subword of v, we can reason similarly to the above case to
get a contradiction.

Otherwise, we have u = xu2, v = v1y and θ(w) = u2v1 for some
u2, v1 ∈ X+.

If θ is morphic, then w = θ(u2v1) = θ(u2)θ(v1) ∈ L, v1y ∈ L imply
θ(u2)y = 1, since L is θ-sticky-free. But we have y ∈ X+, i.e. y �= 1 – a
contradiction.

If θ is anti-morphic and L is θ-5’-overhang-free then w = θ(u2v1) =
θ(v1)θ(u2) ∈ L, xu2 ∈ L imply θ(v1)x = 1. If L is θ-3′-overhang-free
then we use the fact that v1y ∈ L implies θ(u2)y = 1. Both cases contradict
the fact that x, y ∈ X+, i.e., x �= 1, y �= 1. ��
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In the remainder of this section we study the problem of when, given two
languages L1 and L2 with property P , their catenation also has property P .
[18] studied conditions under which the catenation of θ-compliant languages
is also θ-compliant and [14] found conditions under which the catenation
of θ-free languages is still θ-free. Here we are considering situations where
the properties of θ-sticky-freeness and θ-overhang-freeness are preserved
under catenation.

Note first that the catenation of two sticky-free languages is not always
sticky-free.

Example 5. Take Y = {a, b, c}, L1 = {anbn| n > 0}, L2 = {bncn| n >
0}, and t the morphic involution on Y defined as t(a) = c, t(c) = a,
t(b) = b. The language L1 is t-sticky-free. Indeed, any word wx ∈ L1
starts with w = aibj , i > 0, j ≥ 0. This implies t(w) = cibj which cannot
be a suffix of any word in L1. Also L2 is t-sticky-free as wx ∈ L2 implies
w = bicj , i > 0, j ≥ 0, therefore t(w) = biaj which cannot be a suffix of
any word in L2.

However,L1L2 = {anbn+pcp| n, p > 0} is not t-sticky-free. Indeed, we
can find words w = ai, x = bi+jcj , y = akbk+i such that wx = aibi+jcj ∈
L1L2 and also yt(w) = akbk+ici ∈ L1L2.

Example 6. Let Y = {a, b, c} and let e be the identity function on Y
extended to an anti-morphic involution. Let L1 = {anbncn| n > 0}
and L2 = {cnbnan| n > 0}. The language L1 is e-sticky-free as the
images through e of nontrivial prefixes of words L1 are not suffixes of
words in L1. The same argument shows that L2 is e-sticky-free. However,
L1L2 = {anbncn+mbmam| n,m > 0} is not e-sticky-free as we have
images of prefixes of L1L2 which are at the same time suffixes of L1L2.

The following proposition gives a sufficient condition for the catenation
of two languages to be θ-sticky-free.

Lemma 1. Let θ be an anti-morphic involution and let L be a θ-sticky-
free language. If two words w1 ∈ L and w2 ∈ θ(L) have a common and
nonempty prefix then w1 = w2.

Proof. Suppose w1 = px1 and w2 = px2, for some words x1, x2, p with p
nonempty. Then θ(x2)θ(p) ∈ L, which implies that x1 = x2 = 1 using the
fact that L is θ-sticky-free. Hence, w1 = w2. ��
Proposition 3. Let X be a finite alphabet, let θ : X∗ → X∗ be an in-
volution, and let L1, L2 be nonempty subsets of X+ such that L1 ∪ L2 is
θ-sticky-free and L1 ∩ θ(L2) = ∅. Then the following statements hold true.
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1 L1L2 is θ-sticky-free.
2 If L1 is θ-nonoverlapping then L1 ∪ L1L2 is θ-nonoverlapping and θ-
sticky-free.

3 If L2 is θ-nonoverlapping then L2 ∪ L1L2 is θ-nonoverlapping and θ-
sticky-free.

4 If L1 and L2 are θ-nonoverlapping then L1 ∪ L2 ∪ L1L2 is θ-nonover-
lapping and θ-sticky-free.

Proof. For the first part, assume that L1L2 is not θ-sticky-free. Then there
are two words of the form wx and yθ(w) in L1L2 such that w is nonempty
and not both x and y are empty. We show that this assumption leads to
a contradiction. Consider words u1, v1 in L1 and u2, v2 in L2 such that
wx = u1u2 and yθ(w) = v1v2.

First consider the case where θ is anti-morphic. As wx = u1u2 and
wθ(y) = θ(v2)θ(v1), the words u1 and θ(v2) have a common and nonempty
prefix. By Lemma 1, this implies that u1 = θ(v2), which contradicts L1 ∩
θ(L2) = ∅.

Now consider the case where θ is morphic. We distinguish four subcases.

(a) |w| ≤ |u1| and |θ(w)| ≤ |v2|.
(b) |w| ≤ |u1| and |θ(w)| > |v2|.
(c) |w| > |u1| and |θ(w)| ≤ |v2|.
(d) |w| > |u1| and |θ(w)| > |v2|.
Subcase (a) implies that both x and y are nonempty, and u1 = wx1 and
v2 = y2θ(w), for some words x1 and y2. This leads to a contradiction using
the fact that L1 ∪ L2 is θ-sticky-free and L1 ∩ θ(L2) = ∅. Subcase (b)
implies that x is nonempty and θ(w) = s1v2, u1 = wx1 and v1 = ys1,
where s1 is a nonempty suffix of v1 and x1 is a proper prefix of x. Then we
have that u1 = θ(s1)θ(v2)x1 and v1 = yθ(θ(s1)), which contradicts the
fact that L1 ∪ L2 is θ-sticky-free. Subcase (c) also leads to a contradiction
using the arguments of subcase (b).

Finally, subcase (d) implies that w = u1p2, θ(w) = s1v2, u2 = p2x
and v1 = ys1, where p2 is a nonempty prefix of u2 and s1 is a nonempty
suffix of v1. Then we have that u1p2 = θ(s1)θ(v2). If |θ(v2)| < |p2| then
p2 = zθ(v2) and θ(s1) = u1z, for some proper and nonempty prefix z of
p2. Moreover, it follows that v1 = yθ(u1)θ(z) and u2 = zθ(v2)x, which
contradicts the fact that L1 ∪ L2 is θ-sticky-free. If |θ(v2)| ≥ |p2| then
θ(v2) = zp2 and u1 = θ(s1)z, for some proper suffix z of u1. As u2 = p2x
and v1 = yθ(θ(s1)), we have that x = z = 1 and y = z = 1, which
contradicts the assumption that x and y are nonempty.

For the second part it is sufficient to show that the following claim is
false: there are words x, y ∈ X∗, xy ∈ X+, and w ∈ X+ such that
wx, yθ(w) ∈ L1 ∪ L1L2. We distinguish four cases:
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(a) wx ∈ L1 and yθ(w) ∈ L1.
(b) wx ∈ L1 and yθ(w) ∈ L1L2.
(c) wx ∈ L1L2 and yθ(w) ∈ L1.
(d) wx ∈ L1L2 and yθ(w) ∈ L1L2.

Case (a) is not possible as L1 is θ-nonoverlapping and θ-sticky-free. In case
(b), there are words w1 ∈ L1 and w2 ∈ L2 such that yθ(w) = w1w2. Then,
aswxw2 ∈ L1L2 andL1L2 is θ-sticky-free, we have y = xw2 = 1 which is
impossible. In case (c), we have wx = w1w2 for some words w1 ∈ L1 and
w2 ∈ L2. If |w| ≤ |w1| then there is x1 ∈ X∗ such that wx1 = w1 ∈ L1.
This is impossible, however, as L1 is θ-nonoverlapping and θ-sticky-free.
Now if |w| > |w1| then w = w1s, w2 = sx, and yθ(w1s) ∈ L1, for some
s ∈ X+. If θ is anti-morphic then yθ(s)θ(w1) ∈ L1 which is impossible as
L1 is θ-nonoverlapping and θ-sticky-free. If θ is morphic then yθ(w1)θ(s) ∈
L1 which is impossible as sx ∈ L2 and L1 ∪L2 is θ-sticky-free. In case (d),
we have x = y = 1 using the first part of the proposition. Then, w = w1w2
and θ(w) = u1u2 for some words w1, u1 ∈ L1 and w2, u2 ∈ L2. If θ is
anti-morphic thenw = θ(u2)θ(u1) which is impossible asL1L2 is θ-sticky-
free. Now if θ is morphic then w1w2 = θ(u1)θ(u2). But then, using a case
distinction on the relation between |w1| and |θ(u1)|, one can verify that the
assumption of L1 being θ-nonoverlapping and θ-sticky-free is contradicted.

The third part of the proposition can be proved using similar arguments.
Finally, the fourth part follows from the previous ones. ��
The following corollary shows that, if we have at our disposal a θ-

nonoverlapping and θ-sticky-free language K, then the language obtained
by taking arbitrary catenations of words from K remains θ-nonoverlapping
and θ-sticky-free. The result is relevant, as catenation of codewords is one of
the most common ways of combining information encoded on DNA strands.

Corollary 1. Let θ be an involution ofX∗ and letK ⊆ X+ be a language. If
K is θ-nonoverlapping and θ-sticky-free thenK+ also is θ-nonoverlapping
and θ-sticky-free.

Proof. Assume thatK is θ-nonoverlapping and θ-sticky free. We use induc-
tion on n to show that

⋃n
i=1 K

i is θ-nonoverlapping and θ-sticky-free. The
case of n = 1 is trivial. Now suppose the claim holds for

⋃n
i=1 K

i. Then,
K ∪ (

⋃n
i=1 K

i) is θ-sticky-free and, as K ∩ θ(
⋃n
i=1 K

i) = ∅, one has that
K∪K(

⋃n
i=1 K

i) is θ-sticky-free. Hence,
⋃n+1
i=1 Ki is θ-nonoverlapping and

θ-sticky-free and the induction is complete. ��
Note that Proposition 3, (1), gives a sufficient condition (in two parts)

for the catenation of two languages L1L2 to be θ-sticky-free for a given
involution θ. To see whether the conditions are also necessary, we ana-
lyze situations where the catenation of two languages is not θ-free and see
whether this coincides with a violation of condition (1) in Proposition 3.
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One such example is that of the languages in Example 5. In that case, the
languages satisfy condition L1 ∩ t(L2) = ∅ but fail to satisfy the condition
L1 ∪ L2 being t-sticky-free. Indeed, L1 ∪ L2 = {anbn, bmcm| n,m > 0}
is not t-sticky-free.

The languages in Example 6 fail to satisfy both conditions. Indeed, L1 ∩
e(L2) = L1 �= ∅ and L1 ∪ L2 = {anbncn, cmbmam| n,m > 0} which is
not e-sticky-free.

Consider a third example, L1 = {a}, L2 = {b} over X = {a, b}, and
f(a) = b,f(b) = a extended to an anti-morphic involution.These languages
satisfy the conditionL1∪L2 being f -sticky-free butL1∩f(L2) = {a} �= ∅.
The catenation L1L2 = {ab} is not f -sticky-free as we have ab = af(a) ∈
L1L2.

The above examples all depict situations in which the languages involved
are θ-sticky-free and where failure to satisfy one or both parts of condition (1)
in Proposition 3 coincides with L1L2 being not θ-sticky-free. This suggests
that, in case both languages are θ-sticky-free, condition (1) in Proposition
3 for their catenation to be θ-sticky- free is also necessary. The following
result holds.

Proposition 4. Let θ be an involution of X∗ and let L1, L2 ⊆ X+ be two
nonempty θ-sticky-free languages. Then L1L2 and L2L1 are θ-sticky-free
iff L1 ∪ L2 is θ-sticky-free and L1 ∩ θ(L2) = ∅.
Proof. One of the implications follows from 1. of Proposition 3. For the
converse implication, assume that θ is a morphic or anti-morphic involution
ofX∗ andL1, L2 are two θ-sticky-free languages such thatL1 ∩θ(L2) �= ∅.
Letw ∈ L1 ∩θ(L2). Then there exists u ∈ L2 such that θ(u) = w,w ∈ L1.
Then wu ∈ L1L2 and wu = wθ(w). We found a word that is prefix of a
word in L1L2 and its image under θ is a suffix of a word in L1L2, which
means L1L2 is not θ-sticky-free.

Assume now that L1 ∪ L2 is not θ-sticky-free. As L1, L2 are θ-sticky-
free, the only possibilities are that there exist wx ∈ L1 with yθ(w) ∈ L2 or
wx ∈ L2 with yθ(w) ∈ L1. Consequently, wxyθ(w) is in L1L2 or L2L1
contradicting the fact that L1L2 and L2L1 are θ-sticky-free. ��

Proposition 4 does not hold if we replace “L1L2 and L2L1 are θ-sticky-
free” by “L1L2 is θ-sticky-free”, as shown by the following example. Con-
sider the DNA alphabet, the DNA involution τ and the languages L1 =
{ACTG,GGAA}, L2 = {TTCA,CAGG}. Then we have that L1L2 is
τ -sticky-free, but L1 ∪ L2 is not τ -sticky-free. Note that in this case L2L1
fails to be τ -sticky-free.

The rest of this section will address the question of when the catenation
of two languages is θ-overhang-free for some involution θ ofX∗. Recall that
DNA strands are “directed” molecules with two distinct ends called the 3′
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end and 5’ end. Because of this polarity distinction, the overhang structure
(see Fig.2) has two cases. In one case, it is the 3′ ends of the two strands
that hang over, in the other case it is the 5’ ends. We still consider general
results about morphic and anti-morphic involutions. However, because the
3′-overhang and 5’-overhang structures are similar, there is some symmetry
in the four propositions that follow.

In case the involution θ is morphic, a sufficient condition for L1L2 to
be θ-3′-overhang-free is very weak. It namely suffices for L1 to be θ-3′-
overhang-free in order forL1L2 to have the same property, regardless of the
properties of L2.

Proposition 5. Let L1, L2 be nonempty subsets of X+ and let θ be a mor-
phic involution. IfL1 is θ-nonoverlapping and θ-3′-overhang-free, thenL1∪
L1L2 and, therefore, L1L2 are θ-3′-overhang-free and θ-nonoverlapping.

Proof. First, suppose it is not the case that L1L2 is θ-3′-overhang-free and
θ-nonoverlapping. Then there are u, v ∈ L1L2 such that u = wx and
v = θ(w)y for some w ∈ X+ and x, y ∈ X∗.

For wx the choices are:

(1) w = w1w2;w1 ∈ L1, w2x ∈ L2;w1, w2 ∈ X+,
(2) w ∈ L1, x ∈ L2,
(3) x = x1x2, wx1 ∈ L1, x2 ∈ L2 with x1, x2 ∈ X+.

For θ(w)y the choices are:

(a) w = w′w′′; θ(w′) ∈ L1, θ(w′′)y ∈ L2 with w′, w′′ ∈ X+.
(b) θ(w) ∈ L1, y ∈ L2.
(c) y = y1y2; θ(w)y1 ∈ L1, y2 ∈ L2 with y1, y2 ∈ X+.

Cases (1b), (1c), (2a), (2c), and (3) cannot occur because they all contradict
L1 being θ-3′-overhang-free. Case (2b) cannot occur because it would imply
that w, θ(w) ∈ L1, but we have that L1 is θ-nonoverlapping.

The remaining case is (1a). We have w = w1w2 = w′w′′, w1, θ(w′) ∈
L1, w2x, θ(w′′)y ∈ L2. If |w1| = |w′|, then w1 = w′, θ(w′) = θ(w1) and
so bothw1, θ(w1) ∈ L1 – a contradiction. If |w1| > |w′|, thenw1 = w′r, for
some nonempty r. We havew1 = w′r ∈ L1, θ(w′) ∈ L1. This contradicticts
the hypothesis thatL1 is θ-3′-overhang-free. If |w1| < |w′|, we get the same
contradiction.

Now we show that L1 ∪ L1L2 is θ-3′-overhang-free and θ-nonoverlap-
ping by contradiction. Supposewx ∈ L1∪L1L2 and θ(w)y ∈ L1∪L1L2 for
some w ∈ X+ and x, y ∈ X∗. By the above, it is sufficient to consider the
following two cases: (a) wx ∈ L1 and θ(w)y ∈ L1L2, and (b) θ(w)y ∈ L1
and wx ∈ L1L2.

In the case (a), there are words u1 ∈ L1 and u2 ∈ L2 such that θ(w)y =
u1u2. Then, using a case distinction on the relation between |θ(w)| and
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|u1|, one can verify that the assumption of L1 being θ-nonoverlapping and
θ-3′-overhang-free is contradicted. For case (b), one can work analogously.

��
The above proposition can be used to construct large classes of languages

which are θ-3′-overhang-free and θ-nonoverlapping. For example, if the
alphabet is ∆ = {A,C,G, T} and θ is such that θ(A) = T and θ(C) = G,
then the language αL is θ-nonoverlapping and θ-3′-overhang-free for every
symbol α ∈ ∆ and for every nonempty language L ⊆ ∆+.

The following corollary shows that, if θ is a morphic involution, given
a θ-3′-overhang-free language L, the language obtained by taking arbitrary
catenations of words from L is also θ-3′-overhang-free.

Corollary 2. Let L be a nonempty subset of X+ and let θ be a morphic
involution. If L is θ-nonoverlapping and θ-3′-overhang-free, then also L+

is θ-nonoverlapping and θ-3′-overhang-free.

Proof. By Proposition 5, L∪LL+ is θ-nonoverlapping and θ-3′-overhang-
free. Then, the claim follows by the fact that L+ = L ∪ LL+. ��
Proposition 6. Let L1, L2 be nonempty subsets of X+ and let θ be a mor-
phic involution. IfL2 is θ-nonoverlapping and θ-5’overhang-free, thenL1L2
is θ-5’overhang-free.

Proof. Similar to that of the previous proposition. ��
Corollary 3. Let K be a nonempty subset of X+ and let θ be a morphic
involution. IfK is θ-nonoverlapping and θ-5’overhang-free, then alsoK+

is θ-nonoverlapping and θ-5’overhang-free.

Proof. Similar to that of the previous corollary. ��
In case the involution we deal with is anti-morphic, as is the case of the

DNA involution, there are notably more requirements on languages in order
to have their concatenation being overhang-free.

Proposition 7. Let L1, L2 be nonempty subsets of X+ and let θ be an
anti-morphic involution. If L1 is θ-compliant, θ-overhang-free, θ-nonover-
lapping,L2 is θ-3′-overhang-free, andL1 ∪L2 is θ-p-compliant, thenL1L2
is θ-3′-overhang-free.

Proof. Suppose L1L2 is not θ-3′-overhang-free. Then there exist u, v ∈
L1L2 such that u = wx, v = θ(w)y, w ∈ X+ so that xy �= 1.

For wx the choices are:

(1) w = w1w2;w1 ∈ L1, w2x ∈ L2;w1, w2 ∈ X+

(2) w ∈ L1, x ∈ L2
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(3) x = x1x2, wx1 ∈ L1, x2 ∈ L2 with x1, x2 ∈ X+

For θ(w)y the choices are:

(a) y = y1y2; θ(w)y1 ∈ L1, y2 ∈ L2 with y1, y2 ∈ X+

(b) θ(w) ∈ L1, y ∈ L2
(c) w = w′w′′; θ(w′′) ∈ L1, θ(w′)y ∈ L2 with w′, w′′ ∈ X+

The cases (1ab), (2ac), (3bc) cannot occur because they contradict the hy-
pothesis that L1 is θ-compliant and θ-nonoverlapping. Case (3a) cannot
occur because L1 is θ-overhang-free. The case (2b) cannot occur since it
contradicts L1 being θ-nonoverlapping. The remaining case is (1c), where
w = w1w2 = w′w′′, w1 ∈ L1, w2x ∈ L2 and θ(w′′) ∈ L1, θ(w′)y ∈ L2.

If |w1| = |w′|, then w1 = w′ and w2 = w′′. We have xy �= 1. Hence
either x �= 1 or y �= 1. If y �= 1, then θ(w′)y, w′ ∈ L1 ∪ L2 gives a
contradiction, since L1 ∪L2 is θ-p-compliant. If x �= 1, then w2x, θ(w2) ∈
L1 ∪ L2 also gives a contradiction.

If |w1| > |w′|, then there exists r �= 1 such that w1 = w′r and w′′ =
rw2. Hence w1 = w′r ∈ L1, θ(w′′) = θ(rw2) = θ(w2)θ(r) ∈ L1. This
contradicts L1 being θ-overhang-free.

If |w1| < |w′|, then there exists r �= 1 such thatw′ = w1r andw2 = rw′′.
Hence θ(w′)y = θ(w1r)y = θ(r)θ(w1)y ∈ L2, w2x = rw′′x ∈ L2. This
contradicts L2 being θ-3′-overhang-free. ��
Proposition 8. Let L1, L2 be nonempty languages in X+ and let θ be an
anti-morphic involution. IfL2 isθ-compliant,θ-overhang-free,L2∩θ(L2) =
∅, L1 is θ-5’overhang-free, and L1 ∪ L2 is θ-s-compliant, then L1L2 is θ-
5’overhang-free.

Proof. Similar to that of the above proposition. ��
Let L1 and L2 be two DNA languages over ∆ and consider τ , the DNA

involution. The following result gives sufficient conditions for the concate-
nation of L1 and L2 to be overhang-free.

Corollary 4. Let L1 ⊆ ∆+ and L2 ⊆ ∆+ be two nonoverlapping, over-
hang-free, DNA compliant languages with respect to τ , the DNA involution.
If L1 ∪ L2 is both p- and s-compliant, then L1L2 is overhang-free.

4 Languages invariant under bio-operations

Until now we have considered static properties of languages, i.e. conditions
ensuring that the initial DNA language encoding the input to a problem
has good encoding properties. A necessary next step is to determine how
to ensure that the computational steps performed on the language of initial
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encodings do not alter these properties. In this section we investigate several
bio-operations and study their effect on properties of DNA languages.

We model such bio-operations using multiset notation. The reason for
using multisets is as follows. Besides the differences mentioned in Section
2, there is another important difference between electronic and DNA-based
computations. While in electronic computing the computation process is
deterministic and it involves individual elements, in DNA computing we
deal with populations of DNA strands (each DNA strand is present in thou-
sands or millions of copies) and the results of a bio-operation are obtained
stochastically. This means that, in the case of DNA computing, the number
of available copies of each strand is very important. In mathematical terms
this translates in using, instead of sets, the notion of multiset.

A multiset M (over the alphabet X) is a mapping of X∗ into N ∪ {∞}.
Intuitively, for a word w, M(w) is the number of copies of w in M . The
multiset is finite if

∑
w∈X∗ M(w) is finite. The language of all the (distinct)

words in M is called the support of M and is defined as supp(M) = {w ∈
X∗ | M(w) > 0}. Let M1 and M2 be two multisets. We write M1 ⊆ M2
if M1(w) ≤ M2(w) for every word w. We use the notation M1 ∪ M2
for the multiset defined by (M1 ∪ M2)(w) = M1(w) + M2(w) for all
words w. Similarly, the multiset M1 \ M2 is defined by (M1 \ M2)(w) =
max{0,M1(w) −M2(w)} for all words w. The finite multiset that consists
of the words w1, . . . , wk, where k is a non-negative integer, is denoted by
〈w1, . . . , wk〉. Note that these words are not necessarily distinct. The set of
all finite multisets is denoted by Mfin.

Having defined a multiset, we proceed now to define the bio-operations
we will consider in this paper: cut, paste, splice, contextual deletion and
contextual insertion. Cutting and pasting of DNA double-strands is accom-
plished by restriction enzymes [17]: each enzyme can cut only at a specific
subsequence called restriction site, and it cuts the strand in a predetermined
way, either in two blunt-ended pieces or in two pieces with sticky-ends.
Another enzyme, called ligase, can accomplish the reverse bio-operation of
pasting together two double DNA strands with compatible ends. Splicing is
a combination of cut and paste: two DNA strands can be cut, and the prefix
of one recombines with the suffix of the other and vice-versa. Contextual
insertion and deletion of a DNA strand at a specific location in another DNA
strand can be accomplished using a technique called site-specific oligonu-
cleotide mutagenesis.

Note that these bio-operations act on either single strands or double
strands, while the properties we have studied for the initial DNA language
of a problem deal only with the case of single DNA strands. The reason
why this does not restrict the generality of our results is that, even if the
initial data is encoded in double strands, most likely during the computation
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the double-strands will be denatured and may interact with one another as
single-strands.

This section studies the questions of whether we can find algorithms to
decide if a given DNA language L is invariant under some bio-operations,
where invariance means that the results of a bio-operation acting on words in
L belong to the same language L. These notions can be applied as follows.
Define, like in [14], the computation language of a DNA-based system as
the (multi)set of all words that can appear at any time during a computation.
If we prove that a given computation language is invariant under some bio-
operations then we know that the good initial encoding properties will be
preserved under any computation involving those bio-operations.

The results obtained in this section give algorithms for deciding in-
variance under various bio-operations and calculate their space and time
complexities. The problems turn out to be undecidable for context-free lan-
guages. The last proposition of the section gives a method of obtaining
invariant and sticky-free languages of the form K∗, where K is a comma-
free code. Such languages have the property that they are sticky-free and,
moreover, this property is preserved under any of the bio-operations con-
sidered.

Definition 1. A word operation is a partial mapping op : Mfin → 2Mfin;
that is, op(M) is a set of finite multisets, for everyM in dom op.

Intuitively, a word operation op takes a multiset of words, say M , alters
some (or all) of these words and results in a new multiset N in op(M). In
general the operation is nondeterministic: it is possible to obtain a multiset
N ′ in op(M) which is different fromN .Word operations are usually denoted
by expressions that are called rules. If r is a rule then opr is the operation
represented by r. Here we consider the following five types of rules for an
alphabet X that does not contain the symbols $ and #.

• A splicing rule r is an expression of the form x1#y1$x2#y2, where
x1, y1, x2 and y2 are in X∗. Then, dom opr = {〈p1x1y1s1, p2x2y2s2〉 |
p1, s1, p2, s2 ∈ X∗} and opr〈w1, w2〉 = {〈p1x1y2s2, p2x2y1s1〉
| p1, s1, p2, s2 ∈ X∗, w1 = p1x1y1s1, w2 = p2x2y2s2} – see [13] and
[17] for details on DNA systems based on splicing operations.

• A paste rule r is an expression of the form x$y, where x and y are in X∗.
Then, dom opr = {〈px, ys〉 | p, s ∈ X∗} and opr〈w1, w2〉 = {〈pxys〉 |
p, s ∈ X∗, w1 = px,w2 = ys}.

• A cut rule r is an expression of the form x#y, where x and y are in
X∗. Then, dom opr = {〈pxys〉 | p, s ∈ X∗} and opr〈w〉 = {〈px, ys〉 |
p, s ∈ X∗, w = pxys}.
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• A contextual deletion rule r is an expression of the form x#v#y, where
x, v and y are in X∗. Then, dom opr = {〈pxvys〉 | p, s ∈ X∗} and
opr〈w〉 = {〈pxys, v〉 | p, s ∈ X∗, w = pxvys}.

• A contextual insertion rule r is an expression of the form x$v$y, where
x, v and y are in X∗. Then, dom opr = {〈pxys, v〉 | p, s ∈ X∗} and
opr〈w, v〉 = {〈pxvys〉 | p, s ∈ X∗, w = pxys}. The significance of
contextual insertion/deletion operations in terms of computability is ex-
plored in [19].

The above operations can be extended to larger domains when many rules
are available. More specifically, if R is a nonempty set of rules then the
operation opR is defined by dom opR =

⋃
r∈R dom opr and opR(M) =⋃

r∈R opr(M), for every multiset M in dom opR.
If op is a word operation and L is a language, then op(L) is the set of all

words that are obtained when op is applied to any multiset of words in L.
More formally,

op(L) =
{w | ∃M ∈ dom op ,∃N ∈ op(M) : supp(M) ⊆ L, w ∈ supp(N)}.

For example, if L = {b, aaa, abaa} and r is the contextual insertion rule
a$b$a then opr(L) = {abaa, aaba, ababa}, but opr(L \ {b}) = ∅. Now
consider a word operation op and a language L. For every nonnegative
integer n, define opn(L) to be L if n = 0, or op(opn−1(L)) if n > 0. Then,
we write op+(L) for

⋃∞
n=1 op

n(L) and op∗(L) for
⋃∞
n=0 op

n(L). With this
notation the following statement can be proved easily.

Remark 1. LetL be a language and let op be a word operation. If op(L) ⊆ L
then op+(L) ⊆ op(L) and op∗(L) ⊆ L. Also, if R is a set of rules then
opR(L) =

⋃
r∈R opr(L).

If M and N are multisets and r is a rule, we write M =⇒r N if there
are M1 in dom opr and N1 in opr(M1) such that M1 ⊆ M and N = (M \
M1)∪N1; that is,N obtains fromM by applying the operation opr on some
words in M . For example, for r = a$b$a, both of the following hold true:
〈b, aaa, abaa〉 =⇒r 〈abaa, abaa〉 and 〈b, aaa, abaa〉 =⇒r 〈aaa, ababa〉.

Now let us define a multiset system (without output). (In this section
we are only interested in the reliability of DNA computations rather than
the results of these computations; therefore we omit the mechanism for
identifying the output (or terminal) words. The reader is refered to [23]
for various DNA computing models). A multiset system is a triple µ =
(X,A,R), where X is an alphabet, R is a set of rules and A is a multiset,
called the initial multiset of µ. Then, for a multiset B, we write A =⇒∗

µ B
if there is a non-negative integer n and multisets M0, . . . ,Mn such that
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A = M0,B = Mn, and there is a rule ri inR such thatMi =⇒ri Mi+1, for
all i = 0, . . . , n − 1. The computation language of a multiset system µ is
the language {w | w ∈ supp(B) and A =⇒∗

µ B, for some multiset B}. To
prevent failures in computations, such as undesirable bonds between words,
we need to ensure that the computation language satisfies certain ‘good’
combinatorial properties (θ-free, θ-sticky-free, etc.). More specifically, if L
is a language with ‘good’ properties, we wish L to be closed under every
operation opr, where r is any rule ofµ. In this case, assuming supp(A) ⊆ L,
it follows that supp(B) ⊆ L for every multiset B such that A =⇒∗

µ B.

Definition 2. Let op be a word operation. A language L is called invariant
under op, or simply op-invariant, if op(L) ⊆ L.

Next we consider the problem of deciding whether a given language is
invariant under a given word operation. When the given language is regular,
the problem is decidable in time polynomial with respect to the input size.
In this case, the input consists of a finite automaton A and a rule r. The size
of a rule r is simply the length of the word r – see below for the size of the
automaton. On the other hand, when the given language is context-free the
problem is undecidable.

Proposition 9. The following problem is decidable in polynomial time.

– Input: A rule r and a complete deterministic finite automaton A.
– Output: YES/NO depending on whether L(A) is invariant under the

operation opr.

In particular, if r is a paste rule the problem is decidable in timeO(|A|2|r|).
If r is a splicing rule, it is decidable in timeO(|A|4|r|). If r is a cut, contextual
insertion, or contextual deletion rule then the problem is decidable in time
O(|A|2|r|) or O(|A|3|r|), depending on the algorithm used.

The proof of the statement uses, repeatedly, the following basic concepts
and results which involve constructions of automata. We use [28] as refer-
ence.Although most statements about the sizes of automata are not specified
explicitly in [28], they follow easily from the given constructions.

1 A (nondeterministic) finite automaton A is a quintuple (X,Q, δ, s, F ),
where X is the input alphabet, Q is the state alphabet, s is the start
state, F is the set of final states, and δ is the (finite) set of transitions. A
transition is a word of the form pvq, where p and q are state symbols and
v ∈ X ∪ {1}. Such a transition says that at state p the automaton can
enter state q if the current input symbol is v ∈ X , or unconditionally if
v = 1. The size of the transition pvq is equal to |pvq| = 2+|v|. The size
|A| of a finite automaton A is the sum of the sizes of its transitions. We
assume throughout that in every finite automaton all states are reachable
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from the start state and, therefore, the number of states of an automaton
A is smaller than |A|. The automaton A is deterministic if for every
transition pvq one has v ∈ X and there is no transition pvq′ with
q �= q′. Such an automaton is complete if for every state p and for every
a ∈ X there is a transition paq in δ.

2 Given a complete deterministic finite automaton A, one can construct,
in time O(|A|), a complete deterministic finite automaton Ā such that
L(Ā) = X∗ \ L(A) and |Ā| = |A|.

3 Given two finite automataA1 andA2, one can construct, in timeO(|A1|
+ |A2|), a finite automaton A1A2 such that L(A1A2) = L(A1)L(A2)
and |A1A2| = O(|A1| + |A2|).

4 Given two finite automataA1 andA2, one can construct, in timeO(|A1|
+ |A2|), a finite automaton A1 ∪A2 such that L(A1 ∪A2) = L(A1) ∪
L(A2) and |A1 ∪A2| = O(|A1| + |A2|).

5 Given a finite automaton A1 and a deterministic finite automaton A2,
one can construct, in timeO(|A1||A2|), a finite automatonA1∩A2 such
that L(A1 ∩ A2) = L(A1) ∩ L(A2) and |A1 ∩ A2| = O(|A1||A2|).
This can be achieved using a Cartesian product construction.

6 Given an automatonA, a state q ofA, and a setP of states ofA, one can
construct, in time O(|A|), an automaton Aq,P such that |Aq,P | = |A|
and L(Aq,P ) consists of all the words that can be accepted by A when
q is used as the start state and P is used as the set of final states. Note
that, for every words x and y, xy ∈ L(A) if and only if there is a state q
of A such that x ∈ L(As,q) and y ∈ L(Aq,F ), where s is the start state
of A and F is the set of final states of A.

7 A finite transducer T is a sixtuple (X,Γ,Q, δ, s, F ), where X,Q, s
and F are as in finite automata, Γ is the output alphabet, and δ is the
(finite) set of transitions – in this paper we only consider transducers
with X = Γ . A transition is a word of the form px/yq, where p and q
are states, x is an input word, and y is an output word. Such a transition
says that at state p the transducer can enter state q and output y if the
current input is x ∈ X+, or unconditionally if x = 1. The size of a
transducer T is the sum of the sizes of its transitions, where the size
of a transition px/yq is 3 + |xy|. Given a finite transducer T and a
complete deterministic finite automaton A, one can construct, in time
O(|T ||A|), a finite automaton TA such that |TA| = O(|T ||A|) and
L(TA) = T (L(A)) – see [28]; that is, a word v is in L(TA) if and
only if there is a word w ∈ L(A) such that, on input w, the transducer
T can reach a final state and output v.

8 Given a finite automaton A one can decide in time O(|A|) whether or
notL(A) is empty. This problem is equivalent to deciding whether there
is a path from the start state to a final state of the graph (automaton) A.
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This task can be performed in time O(|A|) using a depth-first search
algorithm that would begin with the start state of the graph – see [21],
for instance.

Proof. The main steps of the algorithm are as follows.

(a) Construct a finite automaton Ar such that L(Ar) = opr(L(A)).
(b) Construct the automaton Ar ∩ Ā.
(c) Output YES/NO depending on whether L(Ar ∩ Ā) is empty.

First we consider steps (b) and (c). Deciding whether opr(L(A)) ⊆ L(A) is
equivalent to deciding whether L(Ar)∩L(Ā) = ∅ which can be performed
in timeO(|Ar∩Ā|). As the size of the automatonAr∩Ā is |Ar||A|, the time
complexity of the algorithm is O(|Ar||A|). It remains now to find the size
of the automaton Ar – the time to compute Ar ∩ Ā is O(|Ar||A|). For the
case where r is a paste rule, we show that |Ar| = O(|A||r|) and, therefore,
the algorithm runs in time O(|A|2|r|). For the cases where r is a cut, a
contextual insertion, or a contextual deletion rule, we show two possible
constructions ofAr, one based on transducers and one based on automata of
the form Aq,P . The transducer-based construction produces an automaton
Ar of size O(|A||r|). In this case, the time complexity of the algorithm is
O(|A|2|r|). The second type of construction gives an automatonAr the size
of which isO(|A|2|r|) in the worst case and, therefore, the algorithm would
run in time O(|A|3|r|). Finally, when r is a splicing rule, we can offer only
a construction of the second type which produces an automaton Ar of size
O(|A|3|r|) in the worst case. In this case, the time complexity isO(|A|4|r|).
In each case, for the correctness of the construction, one needs to show
L(Ar) = opr(L(A)). We only do this for the case where r is a splicing rule
– this is the most involved case.

The constructions will involve the following automata, for z ∈ X∗. The
automaton Bz of size O(|z|) such that L(Bz) = X∗z; the automaton Cz of
size O(|z|) such that L(Cz) = zX∗; the automaton Dz of size O(|z|) such
thatL(Dz) = {z}; and the automatonA∅ of sizeO(1) such thatL(A∅) = ∅.
For the input automaton A we write s for its start state and F for the set of
final states.

Splicing rule: r = x1#y1$x2#y2. For each state q, construct the automata
As,q ∩Bx1 , Aq,F ∩Cy1 , As,q ∩Bx2 , Aq,F ∩Cy2 . Let P1 be the set of states
q for which both L(As,q ∩Bx1) and L(Aq,F ∩Cy1) are non-empty. Let P2
be the set of states q for which both L(As,q ∩Bx2) and L(Aq,F ∩ Cy2) are
non-empty. Then, construct the automaton

Ar =
⋃

q1∈P1,q2∈P2

((As,q1∩Bx1)(Aq2,F∩Cy2)∪(As,q2∩Bx2)(Aq1,F∩Cy1)).

The size of Ar is O(|P1||P2|(|A||x1|+ |A||y2|+ |A||x2|+ |A||y1|)). More-
over, as the sizes of P1 and P2 are bounded by |A|, it follows that |Ar| =
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O(|A|3|r|) in the worst case. The total time of the construction isO(|A|3|r|):
O(|A|(|A||x1| + |A||y1| + |A||x2| + |A||y2|)) for computing P1 and P2
plus O(|Ar|) for constructing Ar. We now show that L(Ar) = opr(L(A)).
First, assume w ∈ opr(L(A)). Then, there are words in L(A) of the form
p1x1y1s1 and p2x2y2s2 such thatw = p1x1y2s2 orw = p2x2y1s1. Without
loss of generality assume w = p1x1y2s2. As p1x1y1s1 is in L(A) there is
a state q1 of A such that p1x1 ∈ L(As,q1) and y1s1 ∈ L(Aq1,F ). Hence,
there is a state q1 such that both L(As,q1 ∩ Bx1) and L(Aq1,F ∩ Cy1) are
non-empty which implies q1 ∈ P1. Similarly, there is a state q2 ∈ P2
such that y2s2 ∈ L(Aq2,F ∩ Cy2). But, as w = p1x1y2s2, it follows that
w ∈ L((As,q1 ∩ Bx1)(Aq2,F ∩ Cy2)) and, therefore, w ∈ L(Ar). Now as-
sume w ∈ L(Ar). Then, there are states q1 ∈ P1 and q2 ∈ P2 such that
w ∈ L((As,q1 ∩Bx1)(Aq2,F ∩Cy2)) orw ∈ L((As,q2 ∩Bx2)(Aq1,F ∩Cy1)).
Without loss of generality we only consider the first case which impliesw =
p1x1y2s2, for some p1, s2 ∈ X∗, and p1x1 ∈ L(As,q1 ∩ Bx1) and y2s2 ∈
L(Aq2,F ∩ Cy2). As q1 ∈ P1, L(Aq1,F ∩ Cy1) �= ∅ which, together with
p1x1 ∈ L(As,q1), implies p1x1y1s1 ∈ L(A), for some s1 ∈ X∗. Similarly,
p2x2y2s2 ∈ L(A), for some p2 ∈ X∗. Then, as 〈p1x1y1s1, p2x2y2s2〉 ∈
dom opr, one has w ∈ opr(L(A)) as required.

Paste rule: r = x$y. First, construct the automata Bx and Cy. Then, con-
struct the automaton Ar = (A ∩ Bx)(A ∩ Cy) whose size is O(|A||x| +
|A||y|) or, equivalently,O(|A||r|). Clearly the time required to constructAr

is also O(|Ar|). It follows now that L(Ar) = opr(L(A)) as required.

Cut rule: r = x#y. The transducer-based construction works as follows.
First, construct transducers T1 and T2 whose input language is X∗xyX∗
such that |T1| = O(|r|) and |T2| = O(|r|) and, for every u,w in X∗,
u ∈ T1(w) if and only if w = pxys and u = px, and u ∈ T2(w) if and
only if w = pxys and u = ys. Then, construct the automata T1A and T2A,
each of size O(|A||r|). The required automaton Ar is T1A ∪ T2A and its
size is O(|T1A| + |T2A|) or, equivalently, O(|A||r|). Moreover, the time
required for the construction is O(|A||r|). The second construction works
as follows. First, construct the automata Bx and Cy. Then, for each state
q of the automaton A, construct the automata As,q ∩ Bx and Aq,F ∩ Cy.
Obviously, the total size of those automata is O(|A||r|). For each state q,
test whether both L(As,q ∩ Bx) and L(Aq,F ∩ Cy) are non-empty and, in
this case, add q to an initially empty set P . Note that |P | is no greater than
the number of states of A and, therefore, |P | = O(|A|). Also, P can be
computed in time O(|A|(|A||x| + |A||y|)) which is O(|A|2|r|). Then, the
required automaton Ar is

⋃
q∈P

((As,q ∩Bx) ∪ (Aq,F ∩ Cy)).
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The time complexity of the construction is O(|A|2|r|) in the worst case.

Contextual insertion rule: r = x$v$y. First, test whether v is in L(A). If
not, the rule cannot be applied on the words ofL(A) andAr is simplyA∅. If
v is in L(A) we offer again two constructions for Ar. The transducer-based
construction is as follows. First, construct a transducer T of size O(|r|)
whose input language is X∗xyX∗ such that, for every words u and w, one
has u ∈ T (w) if and only if u = pxvys and w = pxys for some p, s ∈ X∗.
Then, Ar = TA and the time for the construction is O(|A||r|). The second
construction is as follows. First, as in the case of the cut rule, construct the
set P of all states q such that both L(As,q ∩ Bx) and L(Aq,F ∩ Cy) are
non-empty. Then,

Ar =
⋃
q∈P

((As,q ∩Bx)Dv(Aq,F ∩ Cy)).

The time complexity of the construction is O(|A|2|r|) in the worst case.

Contextual deletion rule: r = x#v#y. The transducer based construc-
tion is as follows. First, construct a transducer T whose input language is
X∗xvyX∗ such that |T | = O(|r|) and, for every u,w ∈ X∗, u ∈ T (w) if
and only if w = pxvys and u = pxys, for some p, s ∈ X∗. Then, construct
the transducer TA. If L(TA) is not empty let Ar = TA ∪ Dv; else, Ar is
equal to A∅ (in this case, the operation opr is not applicable to any word in
L(A)). Hence, |Ar| = O(|T ||A| + |v|) or, equivalently, |Ar| = O(|A||r|).
This construction requires time O(|A||r|). The second type of construction
is as follows. For each state q of A, compute the state q′ at which A arrives
when it runs on input v starting at state q. LetP be the set of pairs (q, q′) thus
computed. One has that |P | = O(|A|) and the construction of P requires
time O(|P ||v|), or O(|A||v|) in the worst case. Now, for each pair (q, q′) in
P , construct the automata As,q ∩Bx and Aq′,F ∩Cy and add the pair (q, q′)
in an initially empty set S if both L(As,q ∩Bx) and L(Aq′,F ∩Cy) are non-
empty. It should be clear that S ⊆ P and, therefore, |S| = O(|A|). Now if
S is empty then the rule x#v#y is not applicable to any word in L(A) and
the automaton Ar is equal to A∅. On the other hand, if S is not empty then
Ar is the union of the automata Dv and

⋃
(q,q′)∈S(As,q ∩Bx)(Aq′,F ∩Cy).

In any case, |Ar| = O(|v| + |S|(|A||x| + |A||y|)) which implies |Ar| =
O(|A|2|r|). The total time of the construction is O(|A||v|) for computing P
plus O(|P |(|A||x| + |A||y|)) for computing S, plus O(|v| + |A|2|xy|) for
constructing Ar. Thus, the total time is bounded by O(|A|2|r|). ��
Proposition 10. The following problem is undecidable.

– Input: A cut rule r and a context-free grammar G.
– Output:YES/NO depending on whether the languageL(G) is invariant
under the operation opr.
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Proof. The proof involves a few tools from CF grammars (context-free
grammars) – see, for instance, [27] for details on CF grammars. Let us call
the problem in the proposition Π . We shall reduce the following problem,
call it Π1, to Π:

– Input: A CF grammar G with L(G) ∩X∗aX∗ �= ∅ for all a ∈ X .
– Output:YES/NO depending on whether X∗ = L(G).

Note that Π1 is a restricted version of the following undecidable problem,
call itΠ ′

1: Decide whetherX∗ = L(G), for given CF grammarG. We argue
first that Π1 is indeed undecidable by reducing Π ′

1 to Π1. The argument
consists of two parts:

1. One can decide, for given CF grammar G and given a ∈ X , whether
L(G) ∩X∗aX∗ �= ∅. This follows from the fact that the language L(G) ∩
X∗aX∗ is context-free and the emptiness problem for context-free lan-
guages is decidable.

2. Now assume there is an algorithm decidingΠ1. We obtain a contradic-
tion by deciding Π ′

1 as follows. First test whether there is a symbol a such
that L(G) ∩X∗aX∗ = ∅. If there is, output NO. Else, use the hypothetical
algorithm for Π1 to decide whether X∗ = L(G).

Now we proceed to showing thatΠ , the problem in question, is undecid-
able by reducingΠ1 toΠ . So letG be a CF grammar withL(G)∩X∗aX∗ �=
∅ for all a ∈ X . Consider the set of rules R = {a#1, 1#a, 1$a | a ∈ X}.
We show that L(G) = X∗ if and only if opr(L(G)) ⊆ L(G) for all rules
r ∈ R, or using Remark 1, if and only if opR(L(G)) ⊆ L(G). So first
assume L(G) = X∗. Obviously then opR(L(G)) ⊆ L(G). Now assume
opR(L(G)) ⊆ L(G). Then, op∗

R(L(G)) ⊆ L(G). It suffices to prove that
X∗ is a subset of op∗

R(L(G)). So let w ∈ X∗. We use induction on |w|
to show w ∈ op∗

R(L(G)). First suppose |w| = 0 and consider any word
u in L(G). If w = u we are done; else, u = u1a for some a ∈ X and
u1 ∈ X∗. In this case, by applying the rule a#1 on the multiset 〈u1a〉,
one has u1a, 1 ∈ opR(L(G)); therefore, w ∈ op∗

R(L(G)). Now suppose
u ∈ op∗

R(L(G)) for all words u of length at most n, and consider the word
w of length n + 1. Then, w = ua for some u ∈ Xn and a ∈ X . Also, as
L(G)∩X∗aX∗ �= ∅, there is a word of the form u1au2 in L(G). By apply-
ing the rule a#1 on 〈u1au2〉 and then the rule 1#a on 〈u1a〉 it follows that
a ∈ op∗

R(L(G)). Finally, as u ∈ op∗
R(L(G)), the rule 1$a can be applied

on 〈u, a〉 to obtain w ∈ op∗
R(L(G)) as required. ��

We consider now a method of obtaining invariant and sticky-free lan-
guages of the form K∗, where K ⊆ X+ is a comma-free code. This is a
modification of a method used in [14] to obtain involution-free and splicing-
invariant languages of the formK∗ for some codeK. The idea is as follows:
When an operation cuts the word w ∈ K∗, the resulting words are also in
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K∗ if the cut point in w is at the beginning or at the end of a subword v of
w with v ∈ K. This condition is satisfied when we permit only operations
represented by K-delimited rules as defined below.

Let us define a context to be a pair of words, say (x, y) ∈ X∗ ×X∗. The
context is called K-delimited if x ∈ X∗K or y ∈ KX∗. A rule r is called
K-delimited if one of the following holds

• r = x1#y1$x2#y2 and the contexts (x1,y1) and (x2,y2) areK-delimited.
• r = x#y and the context (x, y) is K-delimited.
• r = x$y
• r = x#v#y and v ∈ K+.
• r = x$v$y and v ∈ K+ and the context (x, y) is K-delimited.

Proposition 11. Let θ be an involution, let K ⊆ X+ be a code, and let
R be a set of K-delimited rules. If K is comma-free, θ-nonoverlapping
and θ-sticky-free (or θ-free), then the language K∗ is opR-invariant, θ-
nonoverlapping, and θ-sticky-free (or θ-free, respectively).

Proof. If K is θ-nonoverlapping and θ-free then also K∗ is θ-nonover-
lapping and θ-free – see [14]. If K is θ-nonoverlapping and θ-sticky-free
then also K∗ is θ-nonoverlapping and θ-sticky-free – see Corollary 1. Now
assume K is a comma-free code. Then, for every v ∈ K and x, y ∈ X∗,
xvy ∈ K∗ implies x, y ∈ K∗ – see [3]. Consider a rule r ∈ R and a
multiset M of words from K+ such that M ∈ dom opr. If r is a cut rule of
the form x#y, then, as r is K-delimited, there are words x1, y1 ∈ X∗ and
v ∈ K such that xy = x1vy1. Moreover M is of the form 〈px1vy1s〉. As
K is comma-free, both px1 and y1s are in K∗. Hence, opr(K∗) ⊆ K∗ as
required. Similarly, one verifies that if r is a rule of another type then again
opr(K∗) ⊆ K∗. ��

There are probably other ways to achieve invariance of K∗, but the
method ofK-delimited rules allows us to use tools from the theory of codes.
Hence, the primary motivation for using K-delimited rules is of a technical
nature. For the interpretation on the other hand, consider a restriction enzyme
with recognition site x#y. If the strands are encoded using a code K that
contains a word v such that x ∈ X∗v or y ∈ vX∗, then the parts of the strand
that will be cut by x#y are also in K∗. One only possible limitation of this
argument is that one needs to find a code K with short enough codewords.

5 Invariant and sticky-free languages with error-detecting capabilities

In this section we build on Proposition 11 to obtain a method for con-
structing languages that, in addition to being invariant, nonoverlapping and
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sticky-free, possess certain error-detecting capabilities. The language prop-
erty of error-detection can be defined with respect to a particular channel, or
(information) medium, which is capable of introducing errors in the trans-
mitted/stored words of the language – see [20]. A channel, or medium, say
γ, is a binary relation on X∗. If (w, z) ∈ γ, then we say that z can be ob-
tained from w through γ, or that γ can transform w to z. When (w, z) ∈ γ
and w �= z, we say that z can be obtained from w with errors. As most
errors encountered when dealing with DNA strands are insertions, deletions
or substitutions of individual bases, we will restrict our discussion to these
types of errors. The main result of the section, Proposition 13, effectively
constructs a solid code that is τ -nonoverlapping, τ -sticky-free, γ-error de-
tecting for some channel γ, and asymptotically optimal regarding its rate of
encoding information.

Here we shall consider the following channel, for any positive integer 9.

• sid(1, 9): a pair (w, z) is in the channel if and only if w can be trans-
formed to z using at most one symbol substitution, insertion, or deletion
in every 9 consecutive symbols of w. For example, both (aaaaa, baaa)
and (aaaaa, baaaaa) are in sid(1, 3), but (aaaaa, baab) /∈ sid(1, 3).
An informal way for testing whether (w, z) is in the channel sid(1, 9) is
the following – see [20] for formal details: Insert special symbols in w
to mark the positions of the errors in w to obtain z. If every two of these
special symbols are separated by at least 9 symbols of w then the errors
are valid and, therefore, (w, z) is in the channel. For example, to test
that (aaaaa, baaa) is in sid(1, 3), one can use either of the expressions
σbaaaδaa and σbaaaaδa, where σba indicates substitution of a with b
and δa indicates deletion of a.

A language L is called error-detecting for a channel γ if, for all words w
and z in L ∪ {1}, (w, z) ∈ γ implies w = z. This property ensures that
the channel cannot transform a word of the language to another word of
the language. Thus, when a word z is retrieved from γ and z is in L then
z must be correct. Here we are interested in languages of the form K∗,
where K is a code. For certain channels γ and codes K, to ensure that K∗
is error-detecting for γ it is sufficient to show that K is (γ, 1)-detecting:
for all v ∈ K∗ and z ∈ K, if (v, z) ∈ γ then v = z. We note that if K is
(γ, 1)-detecting then K is error-detecting for γ.

Our method for constructing languages of the form K∗ that possess the
properties of invariance, sticky-freeness, and error-detection relies on the
following statement which uses the notion of solid code. A code K is solid
if it is an infix code and no proper and nonempty prefix of a word in K is
also a suffix of a word in K.
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Proposition 12. Let 9 be a positive integer, let γ be the channel sid(1, 9),
let θ be an involution, let K be a finite code the maximum word length of
which is at most 9, and let R be a set of K-delimited rules. If K is solid,
θ-nonoverlapping and θ-sticky-free (or θ-free) and (γ, 1)-detecting then the
language K∗ is opR-invariant, θ-nonoverlapping and θ-sticky-free (or θ-
free, respectively), and error-detecting for γ.

Proof. That K∗ is opR-invariant, θ-nonoverlapping and θ-sticky-free fol-
lows from Proposition 11 when we note that every solid code is a comma-free
code. On the other hand, if a solid code K of maximum word length at most
9 is (γ, 1)-detecting then K∗ is error-detecting for γ – see [20]. ��

We continue with a construction of codes over∆ satisfying the premises
of the above proposition. For a word w in ∆∗ we define the parity symbols
pC(w) and pG(w) as follows:

pC(w) =
{
A, if |w|A + |w|C is odd;
T, if |w|A + |w|C is even.

and

pG(w) =
{
A, if |w|A + |w|G is odd;
T, if |w|A + |w|G is even.

Lemma 2. For every positive integer n and for every words x and s in∆∗
the code

Px,s(n) = {xwpC(w)pG(w)s | w ∈ ∆n}
is (γ, 1)-detecting, where γ = sid(1, n+ |xs| + 2).

Proof. Consider words v ∈ Px,s(n)k and z ∈ Px,s(n), where k is a non-
negative integer, such that (v, z) ∈ γ. We need to show that v = z. Clearly,
k ≥ 1. First we show that k = 1 and, therefore, v ∈ Px,s(n). Indeed, as-
sume k ≥ 2. As the number of deletions in v can be at most k, it follows
that |z| ≥ |v| − k. On the other hand, as all the words of Px,s(n) have the
same length, one has |v| = k|z| and, therefore, |z| ≥ k(|z| − 1). Then, the
assumption k ≥ 2 implies |z| ≤ 2 which is impossible. Hence, v ∈ Px,s(n)
and, therefore, |z| = |v| which implies that no insertion or deletion error
can be used to transform v to z. Now assume there is one substitution error
in v to obtain z. By the definition of Px,s(n), there are words w, y ∈ ∆n

such that v = xwpC(w)pG(w)s and z = xypC(y)pG(y)s. Obviously the
error in v cannot be in the subwords x and s. If the error is in pC(w) then
pC(y) �= pC(w). In this case, however, there is no error in w; therefore, y
must be equal tow which implies pC(y) = pC(w) – a contradiction. Hence,
pC(w) = pC(y) and similarly pG(w) = pG(y). Now if the error is in the
subwordw of v, thenw = u1αu2 and y = u1βu2 for some words u1, u2 and
symbolsα, β withα �= β. This implies |y|α = |w|α−1 and |y|β = |w|β+1.
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By considering all the possible values of α and β, one can verify that the
above equations together with pC(w) = pC(y) and pG(w) = pG(y) lead to
a contradiction. Hence, the only possibility remaining is that z is obtained
from v with no errors; that is, v = z as required. ��
Proposition 13. Let x = (xn) be a sequence of words in C{C,G}∗G such
that lim(1/|xn|) = lim(|xn|/n) = 0. For every positive integer n the code

Kx(n) = {xnCwpC(w)pG(w)T | w ∈ ∆n, xnCw /∈ ∆+xn∆
∗}

has the following properties.

1 It is a solid code.
2 It is τ -nonoverlapping and τ -sticky-free, where τ is the DNA involution.
3 It is τ̄ -nonoverlapping and τ̄ -overhang-free, where τ̄ is the complemen-
tarity involution.

4 It is (γ, 1)-detecting, where γ = sid(1, |xn| + n+ 4).
5 The information rate ofKx(n) tends to 1 as n → ∞.
6 If xn = τ(xn) thenKx(n) is τ -free.

Proof. First assume there is a nonempty word u which is a proper prefix
and suffix of the code. If |u| ≤ |xnC| then u ∈ {C,G}+ ∩ ∆∗{T} which
is impossible. If |u| > |xnC| then u starts with xn and is a proper suffix
of some codeword xnCwpC(w)pG(w)T . This implies xnCw ∈ ∆+xn∆

∗
– a contradiction. Hence, Kx(n) is a solid code. Using a similar argument
one can verify that the code is also τ -sticky-free. Moreover, as τ(Kx(n)) ⊆
{A}∆+{G} and τ̄(Kx(n)) ⊆ {G}∆+{A}, it follows that the code Kx(n)
is τ -nonoverlapping and τ̄ -nonoverlapping as well. That the code is τ̄ -
overhang-free follows easily from the fact that every codeword starts with
C and ends with T . Now, as Kx(n) ⊆ PxnC,T (n), Lemma 2 implies that
Kx(n) is (γ, 1)-detecting.

For the second last part, consider the code Lx(n) that consists of all the
words w in ∆n such that the symbols of w at positions 1, |xn|, 2|xn|, . . .
are not in {C,G}; that is, Lx(n) = ({A, T}∆|xn|−1)qn{A, T}∆rn , where
qn and rn are the unique integers satisfying n − 1 = qn|xn| + rn. Then it
follows that Lx(n) is a subset of the set {w | w ∈ ∆n, xnCw /∈ ∆+xn∆

∗}
whose size is equal to |Kx(n)|. Hence, |Kx(n)| ≥ |Lx(n)| which implies

|Kx(n)| ≥ (2 · 4|xn|−1)qn · 2 · 4rn = 4n−(1+qn)/2.

From the above and the assumptions about |xn|, it follows that log4 |Kx(n)|/
(|xn| + n+ 4), the information rate of Kx(n), tends to 1, as n → ∞.

For the last part, assume there are words w1, w2, w ∈ ∆n such that
xnCw1, xnCw2, xnCw /∈ ∆+xn∆

∗ and

xnCw1pC(w1)pG(w1)TxnCw2pC(w2)pG(w2)T ∈ ∆+z∆+,
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where z = τ(xnCwpC(w)pG(w)T ) = Aτ(pG(w))τ(pC(w))τ(w)Gxn.
As z starts with the symbol A and ends with the symbol G, there must
be a suffix s1 of w1 and a prefix p2 of w2 such that |s1| + |p2| = n and
z = s1pC(w1)pG(w1)TxnCp2. Then, there exists a suffix s of length |p2|
of τ(w) such that xnCp2 = sGxn which implies that xnCw2 ∈ ∆+xn∆

∗
– a contradiction. Hence, the code Kx(n) is τ -free. ��

6 Empirical tests and future directions

We conclude this paper with some empirical tests for checking whether
certain DNA languages possess the good encoding properties defined in
Section 2: (a) the sets of genes of various organisms, and (b) the set of
encodings used in Adleman’s experiment [1].

A gene is a section of DNA from a genome that contains information
for the construction of a protein: it consists of coding regions (exons) alter-
nating with introns (DNA sequences that do not code for proteins and will
eventually be deleted). Consider a collection of genes of an organism (herein
a gene will consist only of its coding regions, excluding the introns) to be
a language over ∆. Call such a language a gene language. In this section
we investigate whether several known gene languages satisfy the conditions
(A)-(J) defined in Section 2 for data-encoding DNA languages. Gene lan-
guages as such do not exist in reality. The genes as present on the DNA
sequence of a genome contain, besides their coding regions, also regions
that do not code for any proteins. Moreover, the genome contains other se-
quences besides both the above-mentioned ones, for example promoters and
enhancers of gene activity. The context of DNA sequences in a living cell is
different from the DNA computing set-up in that all the genomic sequences
are strung along the genome and are not separate sequences that may inter-
act. However, as gene languages are DNA languages provided by nature,
they seem a natural test-bed for our properties. Moreover, DNA computa-
tions may use DNA sequences that are parts of natural DNA and thus, sets
of subwords of gene languages can become subsets of a DNA language used
for bio-computations. Consequently, the results of these tests might give us
an indication of the degree to which our formalizations are compatible with
the biological reality.

In this section we will refer to conditions (A)-(F) in Section 2 as the τ -full
conditions (stemming from a fact that a full match of some word is needed),
(G)-(J) as the τ -partial conditions (only a partial match of some word is
needed) and the entire collection of conditions as the τ -total conditions.
Recall that τ is the formalization of the Watson-Crick DNA involution.

Before testing, we can advance conjectures whether gene languages
which are, after all, different from and serve different purposes from DNA
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languages used for computations, should have the defined “good” properties.
There is a good chance that a gene language will satisfy the τ -full conditions,
simply because of the length of the words in a gene language. For example,
a gene language LG should almost certainly be τ -nonoverlapping. Indeed,
for a language not to be τ -nonoverlapping, we need to find two words in
the language that are perfect Watson-Crick complements of each other. This
implies, however, that the words are of the same length, which is unlikely to
happen forLG since it is unlikely that two genes have the exact same length.
It is still possible, however, that LG could fail to satisfy the τ -compliance
condition since it is not unusual for one gene to be significantly shorter than
another and therefore, at least in theory, its Watson-Crick complement could
be a subword of another gene.

Regarding the τ -partial conditions, at first sight it would seem that any
gene language would fail to satisfy these conditions. Indeed, such a con-
jecture seems supported by the fact that a partial binding of just a single
nucleotide between the two genes would cause the whole language to fail
the test. A closer look at the definition of a gene, however, reveals some ad-
ditional facts that undermine that conjecture. A region of a DNA sequence
that codes for a gene almost always starts with ATG and tends to end with
either TAA, TAG or TGA (the STOP codons). Consequently, any pair of such
sequences will successfully pass the τ -sticky-free test. This is true as most
genes will have the form ATGu and thus, another gene, which is of one of
the forms vTAA, vTAG or vTGA, would not bind to it in the fashion required.

Finally, note that the kind of argument that takes into account the start
and end sequences of a gene fails to indicate whether or not a gene language
will have the τ -3′-overhang, τ -5′overhang or τ -overhang-free properties.
Indeed, for a pair of genes to fail the τ -3′-overhang-free test, for example,
the beginning of a gene should start to bind with the middle of another and
we cannot draw any conclusions as we have no information, in general,
about the sequences inside of a gene.

Let us take a closer look at the conditions (A)-(J) which are intended
to formalize undesirable bindings that occur between DNA sequences en-
coding information. There are at least two points of view from which these
conditions could be refined to provide a more accurate reflection of biolog-
ical reality.

Firstly, note that the τ -full conditions forbid certain DNA sequences to
perfectly bind with others. In reality, however, two DNA single strands can
bind to each other even if their overlapping regions are not perfect comple-
ments of each other. Instead of identical sequences, or perfect Watson-Crick
complements, we usually deal with the more relaxed notion of homology.
Informally, two sequences are called homologous if they are “almost iden-
tical”, i.e., they differ by relatively few letters comparatively to their length.
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To formalize this concept, we make use of the notion of Hamming dis-
tance.

Definition 3. Given two words of equal length u, v ∈ ∆+, u = a1a2 . . . an,
v = b1b2 . . . bn such that ai1 �= bi1 , ai2 �= bi2 , . . . , aik �= bik , 1 ≤ ij ≤ n,
1 ≤ j ≤ k and aj = bj for j �∈ {i1, i2, . . . , ik}, the Hamming Distance
between u and v is H(u, v) = k.

In other words, the Hamming Distance between two words of equal
length is the number of positions where the two words differ. For example,
H(ACC, GCC) = 1 and H(ACGT, TCGA) = 2.

We are now ready to define the notion of r-homologous words.

Definition 4. Let r be a number with 0 < r ≤ 1. Two words of equal length
u, v ∈ ∆+ are called r-homologous if H(u,v)

|u| ≤ (1 − r).

Informally, two words of equal length are r-homologous if the number
of nucleotides where they differ is at most (1 − r) of their length. Note that
if two words are 1-homologous, this means that they are identical. (In the
analysis that follows, we used r = 1 and r = 0.85.) We can modify the
definitions (A)-(F) to take homology into account. For example, condition
(B) becomes:

If 0 < r ≤ 1, a language L is τ -compliant with homology r iff
w, xuy ∈ L, |w| = |u|, H(u,τ(w))

|u| ≤ (1 − r) implies xy = 1.

Secondly, regarding conditions (G)-(J), the τ -partial conditions, note that
according to the current definitions even a match of one letter would make
them theoretically “stick” to each other and thus, fail the test. However,
given that a gene language consists of relatively long sequences, a binding
between subsequences of an empirically suggested length of at least n = 9
is required for the sequences to stick to each other in any reliable fashion.

We can now modify accordingly definitions (G)-(J) to take this observa-
tion into account. For example, condition (G) becomes:

Let n ≥ 0 be a natural number. A language L is τ -sticky-free of
degree n iff wx, yτ(w) ∈ L, |w| ≥ n implies xy = 1.

We may denote a τ -partial condition of degree n with a subscript to signify
the degree. Thus, τ -sticky-free of degree n becomes τn-sticky-free.

Each genome we tested came with a list of coding regions that were
extracted, and their union was taken to be the gene language defined by
the genome. These coding regions are considered to be regions that code
for some protein, although some coding regions are more well defined than
others. For ease of testing, any coding region listed in the genome was taken
to be a word in the corresponding gene language.

The test data for the programs was extracted from the genomes listed
below.
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• Human Papilloma Virus (HPV)
HPV is a relatively small genome, but with the 63 different variations
that have been mapped, it provides a large number of test cases that can
be verified rapidly. Of the 63 genomes tested, there were an average of
7 coding regions per genome. The smallest coding region (of the entire
collection) was 117 base pairs long, whereas the longest was 3132. The
average length of a coding region was 1040 base pairs.

• Various mitochondria
Mitochondria are small, specialized organisms (organelles) that live inside
the cells of eukaryotes (organisms whose cells have a membrane enclosed
nucleus, such as mammals). Thirteen different genomes were tested. On
average, each genome contained 20 coding regions. Overall, the shortest
coding region was 64 nucleotides in length, with the longest being 5223
nucleotides. The average number of nucleotides in a coding region was
786.

• Drosophila
Drosophila is a type of fruit fly. The genome is relatively small but is
much larger than that of HPV or mitchondrial genomes. It consists of
13912 coding regions. The coding regions (i.e., words) ranged from a
length of 78 base pairs to 26415 base pairs. On average, the length of a
coding region was 1503 base pairs.

• Arabidopsis
Arabidopsis is a type of mustard plant. The genome of this organism is
approximately three times larger than that of drosophila, making it a rather
large genome. It consists of 25570 coding regions, ranging in length from
60 base pairs to 15417 base pairs. The average length of a coding region
is 1289 base pairs.

For the drosophila genome, some coding regions were listed as having very
short lengths. It is suspected that these short lengths were due to erroneous
data (or erroneous interpretation of the data) in the genome file. When the
tests were performed, all regions for all genomes with length less than 60
base pairs were omitted. The rationale for this is that a coding region (with
no introns) of length 60 defines 20 amino acids. This does not form a very
large protein. Most proteins are rather complicated, so even a limit of 20
amino acids for a protein seems unlikely.

All tests were performed on a single CPU system, running at 1 GHz. The
τ -full conditions with homology r (denoted also by r-τ -conditions) were
run with r = 100% and r = 85%. For the τn-partial conditions, tests were
only run with n = 9, because a binding of two DNA strands of length less
than 9 is considered to be weak and therefore unlikely. Not all tests were run,
because of prohibitively high running times. This is indicated either by the
absence of the respective columns in the tables or by an ∞ sign. Future work
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includes optimizing the algorithms used to achieve substantial reductions in
running times.

Table 1. Gene language tests: Results for τ -full conditions. The numbers in parentheses
indicate the length of the subword that is able to bind completely with another word

τ -nonoverlapping τ -compliant τ -free
HPV pass pass pass

Mitochondria pass pass pass
Drosophila pass fail fail

(294)
Arabidopsis pass fail fail

(132)

Table 2. Gene language tests: Results for τ -full conditions with homology 85%

85%-τ -nonoverlapping 85%-τ -p-compliant 85%-τ -s-compliant
HPV pass pass pass

Mitochondria pass pass pass
Drosophila pass ∞ ∞
Arabidopsis pass ∞ ∞

Table 3. Gene language tests: Results for τn-partial conditions with n = 9 (two strands will
stick if they have matching ends of length at least 9). The numbers in parentheses indicate
the lengths of the matching sequences

τ9-sticky-free τ9-3′-overhang-free τ9-5′overhang-free
HPV pass pass 1 fail

Mitochondria pass 1 fail 3 fail
(9) (9, 9, 341)

Drosophila ∞ ∞ ∞
Arabidopsis ∞ ∞ ∞

The failures with partial matches of length 9 for mitochondria in Table 3
are not nearly as significant as the match of length 341. This very long match
was somewhat surprising considering the probability of such a match oc-
curing. It would be interesting to investigate which coding regions matched
up so well and what they represent, as this may provide some insight into
why the match is so long.

It should be noted that the failures in Table 1 may be a result of the over-
simplified approach of considering each coding region listed in the genome
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as a word in the language. The coding region may be labelled in the original
data as having special properties or may not in fact be a coding region. For
future tests, these details will be investigated. This applies to all genomes
being considered.

We now present the results of our tests on the DNA encodings used in
Adleman’s experiment, [1]. As expected, as such an in vitro DNA compu-
tation is exactly the situation where we would want the defined encoding
properties to apply, we find that all the sequences used pass our refined tests.

The input to the Hamiltonian Path Problem is a directed graph with a
designated input node and a designated output node. The question is whether
the graph possesses a Hamiltonian Path, i.e., a path starting at the input node,
ending at the output node, and passing through all the nodes exactly once.
Adleman’s DNA solution to the problem was to encode each node i in a DNA
sequence uivi, where |ui| = |vi| = 10 and encode each edge in a 20-letter
long DNA sequence as follows. The (oriented) edge connecting nodes uivi
and ujvj was encoded as τ(vi)τ(uj). Consequently, when putting together
the edges and the nodes, all possible legal paths through the graph were
formed. The DNA algorithm proceeded afterwards by a sequence of bio-
operations intended to weed out the paths that were not Hamiltonian.

Table 4 shows the results of testing whether the set of nodes and the set of
edges, taken separately and together, have the good encoding properties we
have defined. As expected, the set of edges and nodes taken together fails all
the tests except the τ -nonoverlapping one. This happens as, in this particular
DNA algorithm, the very mechanism that solves the problem is based on
the interaction by hybridization of nodes with edges. However, we would
expect that, as nodes should not hybridize with nodes, neither edges with
edges, the sets taken separately should pass the tests. The obtained results
are presented in Table 4.

Table 4. Results of tests on sequences used in Adleman’s DNA computing experiment [1]

Edges Nodes Both
τ -nonoverlapping pass pass pass
τ -compliant pass pass fail
τ -free pass pass fail
τ -sticky-free fail fail fail
τ -3′-overhang-free fail fail fail
τ -5′overhang-free fail fail fail

We see that both the set of nodes and the set of edges fail the τ -sticky-
free, τ -3′-overhang-free and τ -5’-overhang free tests. The reason is that the
original definition causes a DNA language to fail a τ -partial test even in the
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Table 5. Results of tests on Adleman’s sequences with n = 0 to 5. A − indicates a fail and√
indicates a pass. The tuple at a position i represents the result with n = i. For example,

the set of edges when tested for τ3-3′-overhang-free is a fail, but τ4-3′-overhang-free is a
pass

Edges Nodes Both
τi-sticky–free (−, −, −,

√
,
√

,
√

) (−, −, −,
√

,
√

,
√

) (−, −, −,
√

,
√

,
√

)
τi-3′-overhang-free (−, −, −,

√
,
√

,
√

) (−, −, −,
√

,
√

,
√

) (−, −, −, −, −, −)
τi-5′-overhang-free (−, −, −, −,

√
,
√

) (−, −, −,
√

,
√

,
√

) (−, −, −, −, −, −)

Table 6. Results of tests on the Adleman sequences with r = 85% for the τ -full conditions

Edges Nodes Both
85% − τ -nonoverlapping pass pass pass
85% − τ -compliant pass pass pass
85% − τ -free pass pass fail

case when two strands stick to each other by a single nucleotide. This is
not a realistic assumption and Table 5 lists the results of testing Adleman’s
sequences with n = 0 up to n = 5. Note that n = 4 is the first value
where the sets of DNA encodings pass all the tests, which is reasonable as
overlaps of at most 3 nucleotides do not usually lead to undesired bindings
of 20-nucleotide-long strands.

Table 6 contains the results of the τ -full tests for Adleman’s sequences
where the condition of “bind only if perfectly complementary” has been
replaced by “bind if at most 15% of nucleotides differ”. Note that the sets
pass also this more realistic condition.

Overall, the results confirm that the choice of node and edge encodings
was one that ensured that the computation in Adleman’s experiment would
proceed as planned, without unwanted hybridizations.

To conclude, the results of these empirical tests suggest that our defini-
tions of good encoding properties, and especially their refinements, are an
adequate model of the biological reality of computing with data encoded on
DNA strands. Directions of further research include a detailed investigation
of sticky-free and overhang-free languages with specified length of overlap,
and of DNA compliant and free languages that take homology into account.
This includes the design of more efficient algorithms to check the conditions
when large amounts of data are involved.
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